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Topic

Take home points

. Simple examples
. Dynamical system
. McMillan Theorem

. Typical set coding

. Relative entropy

. Costs of block bound-
aries

. AR models for image
coding

Information Theory

This can all be viewed as dynamics

Entropy is growth rate

— log Probability = Code Length
D(P||Q) = Cost of model error

Don’t use blocks

High likelihood — compression
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Compressing Strings of Quits

e Want to like BACDAAAB...A of i.i.d letters invertibly
e to short string like 01101010101110010...0 of
Letter | Code LengthL Probability P P-L

A 0 1 0.5 0.5

B 10 2 0.25 0.5

C 110 3 0.125 0.375

D 111 3 0.125 0.375

1.75 =EL

because —log,(P(x)) = L(x) Yxand EL = H
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Markov Trits

=
3
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Code for Trits

Given Followed by Code Cond. Prob.

1
a a 00 i
1
a ba 01 i
1
a bc 1 5
1
C C 0 5
1
C a 1 5

10

H = —Dbits
11
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1-d Map

Avg. log, (| f'|) = 12bits
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Typical Sets and The McMillan Theorem

For large n, the number of plausible strings, x7, is 2" and the
of each plausible string is excluding a set of strings whose total
probability is small.

Notation:

X A discrete random variable (carries alphabet and probability as
freight).

X Alphabet, i.e., set of possible values.
The function that maps subsets of X to
P(x), Pr{X = x} Variants in notation.

x; The sequence (X1,X2,...,Xn).
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Definition 1 The typical set Aé”) IS the set of sequences such that

on(H(X)+e) < < 2N(H(X)—¢)
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Typical Sets? cont.

Theorem 1 (McMillan) If the process X1, Xo, X3, ... Is ergodic with
probabilities given by ~ Py, then

~10gP(x) —+ H(x) _in probability

Theorem 2 The typical set has almost all of the probability, and all of the
sequences have about the same probability, more precisely:

1. X} eAén) — H(X)—e< —3logP(x]) <H(X)+e¢
2. Pr{A1 =~ 1 ¢ for n large enough.
3.

4, for n large enough.

4Cover and Thomas state and prove these theorems for i.i.d. sources. They are true for
ergodic sources.
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Typical Set Coding

Theorem 3 If the source X;' is i.i.d. and & > 0 then for n large enough
there Is a code which maps the source to bit strings in a one-to-one
fashion and the satisfies

<H(X)+d
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Picture proof of Theorem 3. If you represent each x € Aé”) by a string
of n(H(X) + ¢€) bits and you represent each by a string of

, then the expected value of the number of bits used is
bounded by Npiis < n(H(X)+¢€) +enlog(X) = nH(X) +en(1+log(X)).
Thus the number of bits per character can be made arbitrarily close to the
entropy.
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Cost of Model Error

D(P||Q) = Eplog%

IS the relative entropy or Kullback Libeler distance between the two
probability functions P and

The average cost incurred by building an optimal code based on a
when in fact P is true is D(P||Q).
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Code length - probability duality
For uniquely decodablity, codeword lengths {l;} must satisfy

22—“ <1 (1)

Minimizing

L=E((X) =Y PX)I(x) (2)
subject to Eqgn. 1, one finds that the optimal lengths are
1*(x) = —log(P(x)), and L = — S« P(x) log(P(x)) = H(X).

If lengths are interpreted as logs of probabilities, requiring Egn. 1 to be an
equality Is the same as requiring that the probabilities sum to one.
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Lengths and Probabilities cont.

Conversely, one can derive a probability function Q from a set of code
lengths {I; }
2—1(X)
- yy2~')
From this point of view, Huffman coding is the solution to the problem:

« Given a probability function P, find the probability function Q that
minimizes
D(P|IQ)
o Subjectto
109,(Q(X)) € Z, Vx,

le, find the dyadic Q closest to P.
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Costs of Blocking?
Slope=H(X)

H(X) H(XnlX7™) ’

n n

Plot on the left illustrates the definition of entropy rate, ie,
H(X) = limpe =H(X]"). Plot on the right illustrates the cost of
disregarding the history at block boundaries.

There are two costs of blocking:
. (see Fig.).

e Coding cost (can be limited to one bit per block).

aSee Ross Williams’ dissertation (http://www.ross.net/compression/index.html) for an in-
formative rant on the weaknesses of block Huffman coding.
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Costs of Blocking cont.

Given Px(t)|xt—1, I.e., a model, one can use arithmetic coding to represent
1

an entire message in a single block, thus paying the blocking costs only
once.

Suppose that we use blocks of size n and use the following notation:
Px+ The true model.
Qxp The best block model.
The best block model.
Asymptotically, the cost of blocking on a per symbol basis is given by the
X Note
RXD)

d(P[[R) = d(P[|Q) +d(Q|[R)

as illustrated in the Fig.

relative entropy rate, d(P||R) = %Eplog i
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Costs of Blocking cont.

Block Models

Modeling Cost: d(P||Q), constrain Q to be Block Model
Coding Cost: d(Q||R), constrain R to be Dyadic Block Model
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AR Models for image coding

X1 | X2

X3 | Y

y the central forecast value pixel y

A the matrix of autoregressive coefficients for constructing y

y=A- [X17X2,X3}
(y_y) ~ N(OazY)
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Data Flow Diagram

Input file

Mode

i

Encoder

EE—

Compressed File

One can test new modeling ideas by modifying only the Analysis and

modules.

Information Theory
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